
Chapter 11:
Case Studies

❐ Illustrate trade-offs and issues that arise in real applications
❐ Illustrate use of domain knowledge
❐ Illustrate representation development
❐ Some historical insight: Samuel’s checkers player

Objectives of this chapter: 
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TD Gammon

Tesauro 1992, 1994, 1995, ...

❐ White has just rolled a 5 and a 2 so
can move one of his pieces 5 and
one (possibly the same) 2 steps

❐ Objective is to advance all pieces to
points 19-24

❐ Hitting
❐ Doubling
❐ 30 pieces, 24 locations implies

enormous number of configurations
❐ Effective branching factor of 400
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A Few Details

❐ Reward: 0 at all times except those in which the game is
won, when it is 1

❐ Episodic (game = episode), undiscounted
❐ Gradient descent TD(λ) with a multi-layer neural network

 weights initialized to small random numbers
 backpropagation of TD error
 four input units for each point; unary encoding of

number of white pieces, plus other features
❐ Use of afterstates
❐ Learning during self-play
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Multi-layer Neural Network
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Summary of TD-Gammon Results
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Arthur Samuel 1959, 1967

Samuel’s Checkers Player

❐ Score board configurations by a “scoring polynomial”
(after Shannon, 1950)

❐ Minimax to determine “backed-up score” of a position
❐ Alpha-beta cutoffs
❐ Rote learning: save each board config encountered together

with backed-up score
 needed a “sense of direction”: like discounting

❐ Learning by generalization: similar to TD algorithm
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Samuel’s Backups
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The Basic Idea

“. . . we are attempting to make the score,
calculated for the current board
position, look like that calculated for
the terminal board positions of the
chain of moves which most probably
occur during actual play.”

A. L. Samuel
     Some Studies in Machine Learning

Using the Game of Checkers, 1959
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 More Samuel Details

❐ Did not include explicit rewards
 Instead used the “piece advantage” feature with a fixed

weight
 No special treatment of terminal positions
 This can lead to problems . . .

❐ Generalization method produced “better than average”
play; “tricky but beatable”

❐ Ability to search through feature set and combine features
❐ Supervised mode: “book learning”
❐ Signature tables
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The Acrobot

Spong 1994
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Acrobot Learning Curves for Sarsa(λ)
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Typical Acrobot Learned Behavior
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Elevator Dispatching

Crites and Barto  1996
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Semi-Markov Q-Learning
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Suppose system takes action a from state s at time t1,

and next decision is needed at time t2 in state ! s :
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Passenger Arrival Patterns

Up-peak and Down-peak traffic
•   Not equivalent: down-peak handling capacity is much greater than

up-peak handling capacity; so up-peak capacity is limiting factor.
•   Up-peak easiest to analyse: once everyone is onboard at lobby, rest

of trip is determined. The only decision is when to open and close
doors at lobby. Optimal policy for pure case is: close doors when
threshold number on; threshold depends on traffic intensity.

•   More policies to consider for two-way and down-peak traffic.
•   We focus on down-peak traffic pattern.
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Control Strategies

•   Zoning: divide building into zones; park in zone when idle. Robust in
heavy traffic.

•   Search-based methods: greedy or non-greedy. Receding Horizon
control.

•   Rule-based methods: expert systems/fuzzy logic; from human
“experts”

•   Other heuristic methods: Longest Queue First (LQF), Highest
Unanswered Floor First (HUFF), Dynamic Load Balancing (DLB)

•  Adaptive/Learning methods: NNs for prediction, parameter space
search using simulation, DP on simplified model, non-sequential RL
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The Elevator Model
(from Lewis, 1991) 

Parameters:
• Floor Time (time to move one floor at max speed): 1.45 secs.
• Stop Time (time to decelerate, open and close doors, and accelerate again): 7.19 secs.
• Turn Time (time needed by a stopped car to change directions): 1 sec.
• Load Time (the time for one passenger to enter or exit a car): a random variable with range

from 0.6 to 6.0 secs, mean of 1 sec.
• Car Capacity: 20 passengers

Discrete Event System: continuous time, asynchronous
elevator operation

Traffic Profile:
• Poisson arrivals with rates changing every 5 minutes; down-peak



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 18

State Space

• 18 hall call buttons:  2     combinations
• positions and directions of cars:  18      (rounding to nearest floor)
• motion states of cars (accelerating, moving, decelerating, stopped, loading, turning):  6
• 40 car buttons: 2
• Set of passengers waiting at each floor, each passenger's arrival time and destination:

unobservable. However, 18 real numbers are available giving elapsed time since hall
buttons pushed; we discretize these.

• Set of passengers riding each car and their destinations: observable only through the
car buttons

18

44

40

Conservatively about 10     states22
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Actions

• When moving (halfway between floors):
– stop at next floor
– continue past next floor

• When stopped at a floor:
– go up
– go down

• Asynchronous
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Constraints

• A car cannot pass a floor if a passenger wants to get off
there

• A car cannot change direction until it has serviced all
onboard passengers traveling in the current direction

• Don’t stop at a floor if another car is already stopping, or
is stopped, there

• Don’t stop at a floor unless someone wants to get off
there

• Given a choice, always move up

standard

special
heuristic

Stop  and  Continue
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Performance Criteria

• Average wait time
• Average system time (wait + travel time)
• % waiting > T seconds (e.g., T = 60)
• Average squared wait time (to encourage fast and fair service)

Minimize:
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Average Squared Wait Time

Instantaneous cost:

Define return as an integral rather than a sum (Bradtke and Duff, 1994):
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Algorithm

! 

Repeat forever :

1. In state x at time tx,  car c must decide to STOP or CONTINUE

2. It selects an action using Boltzmann distribution 

   (with decreasing temperature) based on current Q values

3. The next decision by car c is required in state y at time ty

4. Implements the gradient descent version of the following backup using backprop:
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Computing Rewards
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Must calculate

• “Omniscient Rewards”: the simulator knows how long each
passenger has been waiting.

• “On-Line Rewards”: Assumes only arrival time of first
passenger in each queue is known (elapsed hall button time);
estimate arrival times
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Neural Networks

•  9 binary: state of each hall down button
•  9 real: elapsed time of hall down button if pushed
•  16 binary: one on at a time: position and direction of car making

decision
•  10 real: location/direction of other cars: “footprint”
•  1 binary: at highest floor with waiting passenger?
•  1 binary: at floor with longest waiting passenger?
•  1 bias unit ≡ 1

47 inputs, 20 sigmoid hidden units, 1 or 2
output units

Inputs:
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Elevator Results
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Dynamic Channel Allocation

Singh and Bertsekas  1997
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Job-Shop Scheduling

Zhang and Dietterich  1995, 1996
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Job-Shop Scheduling
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Autonomous Helicopter Flight
A. Ng, Stanford; H. Kim, M. Jordon, S. Sastry, Berkeley
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Model-Based Direct Policy Search

❐ Identify model of helicopter dynamics as flown by human
pilot

❐ Model using locally-weighted linear regression
❐ Estimate values via Monte Carlo evaluation
❐ Simple stochastic hillclimbing to adapt policy neural

network
❐ Does not store a value function
❐ To hover: 30 evaluations of 35 seconds of flying time each
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Quadrupedal Locomotion
Nate Kohl & Peter Stone, Univ of Texas at Austin

Before Learning After 1000 trials, or about 3 hours

All training done with physical robots: Sony Aibo ERS-210A
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Direct Policy Search
❐ Half-elliptical locus for each foot
❐ 12 parameters:

 Position of front locus (x, y, z)
 Position of rear locus (x, y, z)
 Locus length
 Locus skew (for turning)
 Height of front of body
 Height of rear of body
 Time for each foot to move through

locus
 Fraction of time each foot spends on

the ground

Simple stochastic hillclimbing to increase speed

Policy Parameterization:
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Learning Control for Dynamically Stable Walking Robots
 Russ Tedrake, Teresa Zhang, H. Sebastion Seung, MIT

Start with a 
Passive Walker
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Value Function + Policy Adaptation

❐ Sophisticated form of Actor-Critic algorithm
❐ Passive walker + 4 actuators: roll and pitch of each foot
❐ Value function and policy represented by linear function

approximators
❐ Behavior is periodic; learning tunes “return map”
❐  Goal: walk on the flat like the passive walker walks on a

slope



http://hebb.mit.edu/~russt/robots
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Grasp Control
R. Platt, A. Fagg, R. Grupen, Univ of Mass

Umass Torso:  “Dexter”
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Control Basis Approach

❐ A set of parameterized closed-loop controllers
❐ Multiple controllers can operate at the same time
❐ Sequencing controllers and combinations of controllers can

generate a variety of behavior
❐ ADP done in a smallish abstract state space:


